Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.484
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578165

RESUMEN

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/toxicidad , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Calidad de los Alimentos , Embalaje de Alimentos/métodos
2.
Sci Total Environ ; 922: 171382, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38432369

RESUMEN

The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Inocuidad de los Alimentos , Control de Plagas
3.
Int J Food Microbiol ; 415: 110637, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38422679

RESUMEN

Rural and small-scale chicken farming is a major source of income in most African countries, and chicken meat is an important source of nutrients. However, chicken meat can be contaminated with Campylobacter spp. and Salmonella spp., pathogens with a high reported burden of foodborne illnesses. Therefore, it is essential to control these pathogens in chicken meat. Quantitative microbial risk assessments (QMRA) can aid the development of effective food safety control measures and are currently lacking in chicken meat supply chains in the African context. In this study, we developed stochastic QMRA models for Salmonella spp. and Campylobacter spp. in the chicken meat supply chain in Burkina Faso and Ethiopia employing the modular process risk model in @Risk software. The study scope covered chicken farming, transport, slaughtering, consumer handling, and consumption. Effectiveness of candidate interventions was assessed against baseline models' outputs, which showed that the mean annual Campylobacter spp. risk estimates were 6482 cases of illness per 100,000 persons and 164 disability adjusted life years (DALYs) per 100,000 persons in Burkina Faso, and 12,145 cases and 272 DALYs per 100,000 persons in Ethiopia. For Salmonella spp., mean annual estimates were 2713 cases and 1212 DALYs per 100,000 persons in Burkina Faso, and 4745 cases and 432 DALYs per 100,000 persons in Ethiopia. Combining interventions (improved hand washing plus designated kitchen utensils plus improved cooking) resulted in 75 % risk reduction in Burkina Faso at restaurants and 93 to 94 % in Ethiopia at homes for both Salmonella spp. and Campylobacter spp. For Burkina Faso, adding good hygienic slaughter practices at the market to these combined interventions led to over 91 % microbial risk reduction. Interventions that involved multiple food safety actions in a particular step of the supply chain or combining different interventions from different steps of the supply chain resulted in more risk reduction than individual action interventions. Overall, this study demonstrates how diverse and scanty food supply chain information can be applied in QMRA to provide estimates that can be used to stimulate risk-based food safety action in African countries.


Asunto(s)
Campylobacter , Pollos , Animales , Carne , Burkina Faso , Microbiología de Alimentos , Etiopía , Inocuidad de los Alimentos , Salmonella , Manipulación de Alimentos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis
4.
Food Chem ; 445: 138378, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38383214

RESUMEN

Mycotoxins are common in many agricultural products and may harm both animals and humans. Dietary mycotoxins are reduced via physical, chemical, and thermal decontamination methods. Chemical residues are left behind after physical and chemical treatments that decrease food quality. Since mycotoxins are heat-resistant, heat treatments do not completely eradicate them. Cold plasma therapy increases food safety and shelf life. Cold plasma-generated chemical species may kill bacteria quickly at room temperature while leaving no chemical residues. This research explains how cold plasma combats mold and mycotoxins to guarantee food safety and quality. Fungal cells are damaged and killed by cold plasma species. Mycotoxins are also chemically broken down by the species, making the breakdown products safer. According to a preliminary cold plasma study, plasma may enhance food shelf life and quality. The antifungal and antimycotoxin properties of cold plasma benefit fresh produce, agricultural commodities, nuts, peppers, herbs, dried meat, and fish.


Asunto(s)
Micotoxinas , Gases em Plasma , Humanos , Micotoxinas/análisis , Gases em Plasma/química , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Hongos , Inocuidad de los Alimentos
5.
J Sci Food Agric ; 104(7): 4218-4225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294189

RESUMEN

BACKGROUND: Bacterial contamination of produce is a concern in indoor farming due to close plant spacing, recycling irrigation, warm temperatures, and high relative humidity during production. Cultivars that inherently resist contamination and photo-sanitization using ultraviolet (UV) radiation during the production phase can reduce bacterial contamination. However, there is limited information to support their use in indoor farming. RESULTS: Lettuce (Lactuca sativa) cultivars with varying plant architectures grown in a custom-built indoor farm exhibited differences in E. coli O157:H7 survival after inoculation. The survival of E. coli O157:H7 was lowest in the leaf cultivar (open architecture) and highest in the romaine and oakleaf cultivars (compact architecture). Of the different UV wavelengths that were tested (UV-A, UV-A + B, UV-A + C), UV A + C at an intensity of 54.5 µmol m-2 s-1 (with 3.5 µmol m-2 s-1 of UV-C), provided for 15 min every day, was found to be most efficacious in reducing the E. coli O157:H7 survival on romaine lettuce with no negative effects on plant growth and quality. CONCLUSION: Contamination of E. coli O157:H7 on lettuce plants can be reduced and the food safety levels in indoor farms can be increased by selecting cultivars with an open leaf architecture coupled with photo-sanitization using low and frequent exposure to UV A + C radiation. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Escherichia coli O157 , Microbiología de Alimentos , Granjas , Recuento de Colonia Microbiana , Agricultura , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis
6.
Food Res Int ; 176: 113799, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163712

RESUMEN

Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.


Asunto(s)
Metales Pesados , Plaguicidas , Humanos , Microfluídica , Inocuidad de los Alimentos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Metales Pesados/análisis
7.
Meat Sci ; 210: 109421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237258

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) can be life-threatening and lead to major outbreaks. The prevention of STEC-related infections can be provided by control measures at all stages of the food chain. The growth performance of E. coli O157:H7 at different temperatures in raw ground beef spiked with cocktail inoculum was investigated using machine learning (ML) models to address this problem. After spiking, ground beef samples were stored at 4, 10, 20, 30 and 37 °C. Repeated E. coli O157 enumeration was performed at 0-96 h with 21 times repeated counting. The obtained microbiological data were evaluated with ML methods (Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR), and Multiple Linear Regression (MLR)) and statistically compared for valid prediction. The coefficient of determination (R2) and mean squared error (MSE) are two essential criteria used to evaluate the model performance regarding the comparison between the observed value and the prediction made by the model. RF model showed superior performance with 0.98 R2 and 0.08 MSE values for predicting the growth performance of E. coli O157 at different temperatures. MLR model predictions were obtained further from the observed values with 0.66 R2 and 2.7 MSE values. Our results indicate that ML methods can predict of E. coli O157:H7 growth in ground beef at different temperatures to strengthen food safety professionals and legal authorities to assess contamination risks and determine legal limits and criteria proactively.


Asunto(s)
Escherichia coli O157 , Productos de la Carne , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Temperatura , Productos de la Carne/microbiología , Recuento de Colonia Microbiana , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Microbiología de Alimentos
8.
J Food Prot ; 87(2): 100213, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38176613

RESUMEN

Food-contact surfaces showing signs of wear pose a substantial risk of Listeria monocytogenes contamination and may serve as persistent sources of cross-contamination in fresh produce packinghouses. This study offers a comprehensive exploration into the influence of surface defects on the efficacies of commonly used sanitizers against L. monocytogenes biofilms on major food-contact surfaces. The 7-day-old L. monocytogenes biofilms were cultivated on food-contact surfaces, including stainless steel, polyvinyl chloride, polyester, low-density polyethylene, and rubber, with and without defects and organic matter. Biofilms on those surfaces were subjected to treatments of 200 ppm chlorine, 400 ppm quaternary ammonium compound (QAC), or 160 ppm peroxyacetic acid (PAA). Results showed that surface defects significantly (P < 0.05) increased the population of L. monocytogenes in biofilms on non-stainless steel surfaces and compromised the efficacies of sanitizers against L. monocytogenes biofilms across various surface types. A 5-min treatment of 200 ppm chlorine caused 1.84-3.39 log10 CFU/coupon reductions of L. monocytogenes on worn surfaces, compared to 2.79-3.93 log10 CFU/coupon reduction observed on new surfaces. Similarly, a 5-min treatment with 400 ppm QAC caused 2.05-2.88 log10 CFU/coupon reductions on worn surfaces, compared to 2.51-3.66 log10 CFU/coupon reductions on new surfaces. Interestingly, PAA sanitization (160 ppm, 1 min) exhibited less susceptibility to surface defects, leading to 3.41-4.35 log10 CFU/coupon reductions on worn surfaces, in contrast to 3.68-4.64 log10 CFU/coupon reductions on new surfaces. Furthermore, apple juice soiling diminished the efficacy of sanitizers against L. monocytogenes biofilms on worn surfaces (P < 0.05). These findings underscore the critical importance of diligent equipment maintenance and thorough cleaning processes to effectively eliminate L. monocytogenes contamination on food-contact surfaces.


Asunto(s)
Listeria monocytogenes , Árboles , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Frutas/química , Cloro , Recuento de Colonia Microbiana , Biopelículas , Ácido Peracético/farmacología , Microbiología de Alimentos , Acero Inoxidable/análisis
9.
Poult Sci ; 103(3): 103471, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295499

RESUMEN

Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.


Asunto(s)
Micotoxinas , Toxina T-2 , Tricotecenos , Animales , Toxina T-2/toxicidad , Toxina T-2/análisis , Toxina T-2/metabolismo , Aves de Corral/metabolismo , Contaminación de Alimentos/prevención & control , Pollos/metabolismo , Tricotecenos/toxicidad , Micotoxinas/metabolismo
10.
Toxins (Basel) ; 16(1)2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276534

RESUMEN

Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.


Asunto(s)
Micotoxinas , Ocratoxinas , Humanos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Ocratoxinas/análisis , Micotoxinas/toxicidad , Micotoxinas/análisis , Inocuidad de los Alimentos
11.
Crit Rev Microbiol ; 50(1): 87-104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608263

RESUMEN

Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Salud Única , Animales , Humanos , Escherichia coli/genética , Bacteriófagos/genética , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Contaminación de Alimentos/prevención & control
12.
Environ Toxicol Pharmacol ; 105: 104349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135201

RESUMEN

The objectives of this study were to evaluate the exposure to a diet naturally contaminated with mycotoxins on lactation performance, animal health, and the ability to sequester agents (SA) to reduce the human exposure to AFM1. Sixty healthy lactating Holstein cows were randomly assigned to two groups: naturally contaminated diet without and with the addition of a SA (20 g/cow/d AntitoxCooPil® -60% zeolite-40% cell wall-). Each cow was monitored throughout lactation. The concentration of aflatoxin B1 (AFB1) in feed and M1 (AFM1) in milk, health status, and productive and reproductive parameters were measured. AFB1 concentration in feed was very low (2.31 µg/kgDM). The addition of SA reduced the milk AFM1 concentrations (0.016 vs. 0.008 µg/kg) and transfer rates (2.19 vs. 0.77%). No differences were observed in health status, production and reproduction performance. The inclusion of SA in the diet of dairy cows reduce the risk in the most susceptible population.


Asunto(s)
Aflatoxina M1 , Contaminación de Alimentos , Lactancia , Leche , Secuestrantes , Animales , Bovinos , Femenino , Aflatoxina B1/toxicidad , Aflatoxina B1/análisis , Aflatoxina M1/análisis , Aflatoxina M1/antagonistas & inhibidores , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Dieta/veterinaria , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Leche/química , Secuestrantes/administración & dosificación , Distribución Aleatoria
13.
Mycotoxin Res ; 40(1): 45-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38133731

RESUMEN

Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.


Asunto(s)
Micotoxinas , Humanos , Micotoxinas/análisis , Aceites de Plantas , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Hongos , Productos Agrícolas , Comidas
14.
Food Microbiol ; 118: 104402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38049261

RESUMEN

Microbial safety of fresh produce continues to be a major concern. Novel antimicrobial methods are needed to minimize the risk of contamination. This study investigated the antimicrobial efficacy of pulsed light (PL), a novel nisin-organic acid based antimicrobial wash (AW) and the synergy thereof in inactivating E. coli O157:H7 on Romaine lettuce. Treatment effects on background microbiota and produce quality during storage at 4 °C for 7 days was also investigated. A bacterial cocktail containing three outbreak strains of E. coli O157:H7 was used as inoculum. Lettuce leaves were spot inoculated on the surface before treating with PL (1-60 s), AW (2 min) or combinations of PL with AW. PL treatment for 10 s, equivalent to fluence dose of 10.5 J/cm2, was optimal and resulted in 2.3 log CFU/g reduction of E. coli O157:H7, while a 2 min AW treatment, provided a comparable pathogen reduction of 2.2 log CFU/g. Two possible treatment sequences of PL and AW combinations were investigated. For PL-AW combination, inoculated lettuce leaves were initially exposed to optimum PL dose followed by 2 min AW treatment, whereas for AW-PL combination, inoculated lettuce were subjected to 2 min AW treatment prior to 10 s PL treatment. Both combination treatments (PL-AW and AW-PL) resulted in synergistic inactivation as E. coli cells were not detectable after treatment, indicating >5 log pathogen reductions. Combination treatments significantly (P < 0.05) reduced spoilage microbial populations on Romaine lettuce and also hindered their growth in storage for 7 days. The firmness and visual quality appearance of lettuce were not significantly (P > 0.05) influenced due to combination treatments. Overall, the results reveal that PL and AW combination treatments can be implemented as a novel approach to enhance microbial safety, quality and shelf life of Romaine lettuce.


Asunto(s)
Antiinfecciosos , Escherichia coli O157 , Nisina , Lechuga/microbiología , Microbiología de Alimentos , Nisina/farmacología , Recuento de Colonia Microbiana , Antiinfecciosos/farmacología , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos
15.
Toxins (Basel) ; 15(11)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999492

RESUMEN

Mycotoxins present a significant health concern within the animal-feed industry, with profound implications for the pig-farming sector. The objective of this study was to evaluate the efficacy of two commercial adsorbents, an organically modified clinoptilolite (OMC) and a multicomponent mycotoxin detoxifying agent (MMDA), to ameliorate the combined adverse effects of dietary aflatoxins (AFs: sum of AFB1, AFB2, AFG1, and AFG2), fumonisins (FBs), and zearalenone (ZEN) at levels of nearly 0.5, 1.0, and 1.0 mg/kg, on a cohort of cross-bred female pigs (N = 24). Pigs were randomly allocated into six experimental groups (control, mycotoxins (MTX) alone, MTX + OMC 1.5 kg/ton, MTX + OMC 3.0 kg/ton, MTX + MMDA 1.5 kg/ton, and MTX + MMDA 3.0 kg/ton), each consisting of four individuals, and subjected to a dietary regimen spanning 42 days. The administration of combined AFs, FBs, and ZEN reduced the body-weight gain and increased the relative weight of the liver, while there was no negative influence observed on the serum biochemistry of animals. The supplementation of OMC and MMDA ameliorated the toxic effects, as observed in organ histology, and provided a notable reduction in residual AFs, FBs, and ZEN levels in the liver and kidneys. Moreover, the OMC supplementation was able to reduce the initiation of liver carcinogenesis without any hepatotoxic side effects. These findings demonstrate that the use of OMC and MMDA effectively mitigated the adverse effects of dietary AFs, FBs, and ZEN in piglets. Further studies should explore the long-term protective effects of the studied adsorbent supplementation to optimize mycotoxin management strategies in pig-farming operations.


Asunto(s)
Aflatoxinas , Fumonisinas , Micotoxinas , Zearalenona , Animales , Femenino , Humanos , Aflatoxinas/toxicidad , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Fumonisinas/toxicidad , Micotoxinas/análisis , Porcinos , Zearalenona/análisis
16.
Orv Hetil ; 164(39): 1527-1536, 2023 Oct 01.
Artículo en Húngaro | MEDLINE | ID: mdl-37778007

RESUMEN

In addition to their role, immunoglobulins can be used in animal and human diagnostic (immunoassay-based) measurements, prophylaxis and (immuno)therapy. For these purposes, today's "alternative" that is advantageous from an animal ethical point of view is the bird immunoglobulin Y isolated from egg yolk. Its development and production are cost-effective, the complexity is low, and due to its advantageous properties, it can be used in assays or even more so in medical therapies (primarily passive immunization). It is widely used (against pathogens or their toxins) in treatments of intestinal or metabolic diseases and inflammations. Its application in human diagnostics is limited, some markers are measured using immunoglobulin Y as assay component. In this study, a possible application, which is less common today, is presented. The problem of environmental impacts is becoming significant. Due to human activities, industrialization, environmental changes increase the appearance of natural environmental pollutants, including the effects of mycotoxins produced by molds locally and/or globally, which (mainly through nutrition) affect humans. Such agents often appear together, several mycotoxins affect the individual. As a result of their persistence, mycotoxins absorbed in the intestinal tract and accumulated in organs, can already reach levels that can cause physiological and/or behavioral effects. Although the examination of sources (contaminated foods) is regulated by law, the extent of accumulation has not been or cannot be examined and is often insufficiently taken into account. Due to the nature of the technique, the anti-mycotoxin avian immunoglobulin Y could be used both for detection of (deposited) mycotoxin(s) and/or even for immunotherapy (e.g., mycotoxin neutralization). Demonstrating the endocrine-disrupting mycotoxins using the example of zearalenone (with an explanation of its reproductive and immunological effects), we present generation of zearalenone (and mycotoxin-specific) avian immunoglobulin developments, advocate its use in human detection, urging the development of measurements that are suitable for detecting (multiple) accumulation. Orv Hetil. 2023; 164(39): 1527-1536.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Humanos , Micotoxinas/análisis , Aves de Corral , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Inmunoglobulinas
17.
J Food Prot ; 86(11): 100171, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778508

RESUMEN

The BIOPIGEE project (part of the One Health European Joint Programme under Horizon 2020) aimed to identify relevant measures to effectively control Salmonella, and another zoonotic pathogen, hepatitis E virus (HEV) within the pig meat food chain. The aim of this study was to identify biosecurity measures or management practices that are relevant for limiting Salmonella and/or HEV occurrence and spread within pig slaughterhouses. This was with the final goal of compiling a list of biosecurity measures for different processes and operations along the slaughter line with evidence of their effectiveness. To achieve this, a literature review was conducted on studies estimating the effectiveness of measures applied in slaughterhouses to reduce the microbial contamination of pig carcasses. Results of this literature search are discussed and presented in summary tables that could be used as a source of information for the pig slaughter industry to further develop their guidelines on hygienic slaughter.


Asunto(s)
Contaminación de Alimentos , Microbiología de Alimentos , Porcinos , Animales , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Carne , Prevalencia , Salmonella , Mataderos
18.
Compr Rev Food Sci Food Saf ; 22(6): 4758-4785, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755064

RESUMEN

Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.


Asunto(s)
Microbioma Gastrointestinal , Micotoxinas , Animales , Micotoxinas/toxicidad , Micotoxinas/análisis , Alimentos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis
19.
Int J Food Microbiol ; 405: 110336, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37541018

RESUMEN

The present study aimed to evaluate the effectiveness of early harvest in preventing aflatoxins in peanuts under drought-stress conditions. A field experiment was conducted on the 2018-2019 and 2019-2020 growing seasons in a greenhouse with an irrigation system to induce three drought stress conditions: no stress, mild, and severe stress. In addition, three harvest dates were proposed: two weeks earlier, one week earlier, and ideal harvest time. The mean peanut yield was 2634 kg/ha, considering the two growing seasons, and the drought stress conditions and harvest dates did not influence significantly. The shelling percentage was significantly higher in samples harvested at ideal harvest (77.7 %) than two weeks earlier (76.2 %) and was not influenced by drought stress conditions. Although a low mean percentage of grains with insect damage was identified, this percentage was statistically higher under severe stress (0.4 %) compared to no-stress conditions (0.2 %). The soil contamination ranged from 2.52 × 103 to 1.64 × 104 CFU/g of Aspergillus section Flavi, and the drought stress resulted in significantly higher concentrations in mild and severe stressed samples. A. section Flavi was found to infect all the peanut kernel samples. The drought stress resulted in higher percentages of A. section Flavi infections in samples from mild and severe stress conditions. The harvest date did not influence the soil and peanut kernel occurrence of A. section Flavi. A total of 435 and 796 strains of A. section Flavi were isolated from soil and peanut kernels, respectively. The potential of aflatoxin production by soil isolates was 31, 44, and 25 % for aflatoxin non-producers, aflatoxin B producers, and aflatoxin B and G producers, respectively, while in peanut kernel isolates were 44, 44, and 12 %. Three different A. section Flavi species were identified from peanut kernels: A. flavus, A. parasiticus, and A. pseudocaelatus. The mean aflatoxin concentration in peanut kernels was 42, 316, and 695.5 µg/kg in samples under no stress, mild stress, and severe stress conditions, respectively. Considering the harvest time, the mean aflatoxin concentration was 9.9, 334.3, and 614.2 µg/kg in samples harvested two weeks earlier, one week earlier, and in ideal harvest, respectively. In conclusion, the early harvest proved to be a viable, cost-free alternative for controlling aflatoxin in the peanut pre-harvest, resulting in a safer product and a better quality for sale and economic gain.


Asunto(s)
Aflatoxinas , Aflatoxinas/análisis , Arachis , Aflatoxina B1 , Sequías , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Aspergillus flavus
20.
Int J Food Microbiol ; 406: 110351, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37567054

RESUMEN

Traditional pork value chains dominate the production and distribution of pork in Vietnam; however, the high level of microbiological contamination in pork may increase the risk of food-borne disease for consumers. There is limited evidence about how to feasibly and scalably reduce microbial contamination in pork sold in traditional markets. This study aimed to assess the effectiveness of light-touch interventions for changing worker behaviour in small-scale slaughterhouses and vendors at traditional pork shops, as well as to identify risk factors for pork contamination. The intervention packages consisted of providing hygiene tools and delivering a food safety training which had been designed in a participatory way and covered 10 small-scale slaughterhouses and 29 pork shops. Pig carcasses, retailed pork, contact surfaces, and hands were sampled to measure the total bacterial count (TBC) and Salmonella contamination before, three and six weeks after the intervention, and trainee practices were observed at the same time. Linear and generalized linear mixed effects models were constructed to identify risk factors for TBC and Salmonella contamination at the slaughterhouses and pork shops. The interventions at slaughterhouses and pork shops both showed a slight reduction of TBC contamination in pig carcasses and Salmonella prevalence in retailed pork, while the TBC in retailed pork decreased only marginally. For slaughterhouses, the regression model indicated that smoking or eating during slaughtering (indicating poor hygienic practices) was associated with TBC increasing, while cleaning floors and wearing boots reduced TBC contamination. For pork shops, using rough materials (cardboard or wood) to display pork was the only factor increasing TBC contamination in pork, whereas cleaning knives was associated with lower TBC. Besides, the presence of supporters and wearing aprons reduced the probability of Salmonella contamination in pork. The findings highlight the effectiveness of light-touch interventions in reducing microbial contamination in pig carcasses at small-scale slaughterhouses and pork at traditional shops over the study period.


Asunto(s)
Carne de Cerdo , Carne Roja , Porcinos , Animales , Carne Roja/microbiología , Carne/microbiología , Mataderos , Vietnam , Tacto , Salmonella , Factores de Riesgo , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...